
a practical guide to coding w/ the
grade 6 mathematics curriculum

this book is property of:

designed+cared for by andrej babić ®

Started as a thesis topic, ended up as a passion project;
code-ometry was and is still probably the most spectacular
use of my time. As the byline states, this is a practical
guide to coding geared toward grade 6 classrooms based on
their mathematics curriculum. This idea first came to me
because I felt that there should be more interest in the
STEAM fields through a child’s life. Through the evolution
of this project and my thesis, I realized that coding is
not just something that people do as part of their jobs, it
is a way of life. Rather, computational thinking is a way
of life and this computational approach to problems does a
lot more for childhood education than just being able to
write a couple of lines of code. Computational thinking
helps develop critical thinking and problem-solving,
children with these skills score on average 16 points higher
on standardized testing than those that do not have this
knowledge, and it even increases confidence. So I poured most
of my free time into this thesis turned passion project over
the last 8 months, I hope you enjoy.

Thank you: {
Mama and Tata;
Jovana and Téa;
Ryanne Spies;
Michael Castledine;
Josh Peressotti;
}

Andrej Babić

Foreword:

Code: Simply put, computer code or just code is a set of
instructions that you can give a computer, and order that
computer to run those instructions. Without the code, your
computer wouldn’t work, and with it, your computer is able
to do all those amazing things that it does now.

Geometry: A branch of mathematics concerned with questions
of shape such as rectangles, the relative position of these
shapes and the relationships between those shapes.

Editor: An editor allows you to write code in real-time and
see what the results of your computer code are. The nice guy
who created code-ometry has created an editor for you all to
use to learn geometry through code.

Javascript (JS): Javascript is a language that is used with
the editor. The same way that you use English to communicate
with your friends and family, the JS is the way you
communicate with the computer.

There are so many things that come to mind when someone says
code; it can mean speaking in piglatin, it can mean the name
of a band or movie, but for our purposes, code is just the
vehicle in which we will drive in order to show you what you
need to know for your work in math.

Code is the basis of everything that we see on screens,
from applications on your phone to the video games you play
and every page on the internet. Code is all around us, and
sometimes that can be confusing or scary, but code-ometry
will make this simple for you.

Can you think of any more examples of code in your everyday
life?

Great! Let’s start by defining all that we need to know for
this lesson.

1:

2:

3:

4:

5:

intro: definitions:

rect (100, 100, 100, 100)

definition: definitions:
X-Axis: The horizontal axis of the grid.

Y-Axis: The vertical axis of the grid.

Translation: The moving of a point or figure, up and down
(on the Y-Axis), or right to left (on the X-Axis).

Reflection: The flipping of a point or figure over a line of
reflection which is called the mirror line.

Rotation: The turning of a figure or object around a fixed
point, wherever it may be.

x-axis

y-axis

exercise 1:
Let’s keep our work on paper right now before we jump on
over to the editor by doing a few geometry problems.

Can you tell what is going on here?

1:

Let’s keep going and figure out what is going on here, soon
we’ll be moving on to learning a few things about Javascript
and the way that you can communicate with the editor.

2:

js definitions:
There are a couple of different ways to work with
javascript, some more complicated than others. code-ometry
has simplified all of these ways to work with javascript in
order for you to learn geometry through this code.

rect = rectangle

ellipse = circle

triangle = triangle :)

px = pixels (each pixel is a physical space when viewing
images online)

(x, y, h, w) = (location on the x-axis with pixels, location
on the y-axis with pixels, the height of the shape, the
width of the shape)

js definitions:

x-axis

y-axis

height

width

how code works:
Okay, so you’ve made it through the painful bit about
learning all the definitions, now we can get to show you
how they all work together. When writing code, we need to
declare what it is that we’re writing, this can be done by
writing one of the shapes that we saw defined earlier such
as: rect, ellipse, and triangle. Then we can add to it the
(x, y, h, w) with numbers in each of these positions.

Let’s look at a few examples.

 rect (100, 100, 100, 100)

in the code gives us this outcome:

That wasn’t so bad, now was it? Let’s look at a few more:

 ellipse (100, 100, 100, 100)

In the code gives us this outcome:

 rect (100, 100, 100, 100)
 rect (300, 100, 100, 100)

In the code gives us this outcome:

exercise 2:

1:
2:

Continuing our work on paper, now that you know how to
declare code and how the (x, y h, w) work, we can work with
these shapes to see how they’re built.

See if you can tell what is being declared here, and what
the (x, y h, w) are:

Awesome, now can you tell what is happening here?

define exercise:
We have went through and learned the basics of code, the
basics of geometry, and their relationships to one another.
We have even looked at some geometry problems, and looked at
how to solve those geometry problems from a perspective of
code. It’s time for a little pop quiz (as if you haven’t had
one of those before), and when we get through this, we can
begin coding!

Define code:

Define reflection:

Define: x-axis:
(here’s a hint)

Define translation:

Define y-axis:
(here’s a hint)

Define rotation:

Bonus Question! Define JavaScript:

let’s code:
WOOHOO! Alright, I’ll try to contain my excitement... But
you’re well on your way to becoming a programmer! Or a
mathematician, I guess... Maybe both!

Lets visit the website ____________________________ and make
sure to to keep reading on.

Code-ometry has a web editor (which we’ve learned the
definition of a little earlier), and we are going to use
this editor to build some shapes.

It should look a little like this:

Let’s get to coding. We have defined rect as rectangle
earlier. So we’ll make a nice and simple square on the web
editor.

Try typing this into the textbox on your code-ometry site.

rect (100, 100, 100, 100)

It should look a little like this:

keep going:
Well, I think you can now call yourself a coder.

What’s that? You don’t believe me? Then, let’s reload the
page and try another thing, and this one won’t be so easy.

Let’s make a circle with the same x-axis and y-axis, and the
same height and width.

Remember, a circle isn’t called a circ the way that a
rectangle is declared as a rect.

When you’re done, it should look a little like this:

Now let’s get that circle moving.

With the code for a circle in the textbox, hit enter on your
keyboard and start a new line of code. Take the x value of
the circle and increase the number by 200.

1:

2:

There are two different things that could have happened to
this circle to make it look this way, what are they?

exercise 3:
Now that you’re a coder, we can focus on both the code and
the geometry. code-ometry, hah, get it?

Draw a rectangle that has an x-axis value of 0, and a y-axis
value of 0, height 100, and width 100.

Then hit enter and draw another rectangle with the same
height and width values, but with an x-axis value of 100 and
a y-axis value of 100.

Hint: Don’t let the wording of the exercise mess you up, it
is still always (x, y, h, w).

Here’s what your code should look like:

1:

2:

3:

Now there are three different things that could have
happened to this circle to make it look this way, what
are they?

triangles:
While rect and ellipse definitions call for four numbers (x,
y, h, w), triangles don’t play by those rules. There are
three points on every triangle, no matter what. That’s what
makes it a triangle. While rectangles and circles can have
two values for how they’re made (the height and width of the
shape), triangles have to have six values for how they’re
made, as each point has to have an x-axis value and a y-axis
value.

It may be easier to remember if I help you out with the
code.

Try reloading the web editor and typing in:

triangle (100, 100, 100, 350, 400, 350)

It should look a little like this:

Let’s look at this code and how it runs on the code editor:

triangle (100, 100, 100, 350, 400, 350)

triangle (500, 100, 500, 350, 800, 350)

What’s going on here?

Example:

triangles:
Now let’s look at this code and how it runs on the code
editor:

triangle (100, 100, 100, 350, 400, 350)

triangle (700, 100, 700, 350, 400, 350)

What’s going on here?

If you’ve made it this far, I’d like to be the first to say
congratulations!

Secondly, thank you for sticking through the code-ometry
practical guide to coding in the grade 6 mathematics
curriculum and learning a little bit about how code and
mathematics work hand in hand.

Hopefully, you enjoyed learning a little bit of the
javascript that was in this book and if you didn’t, at least
it’s over now!

Thanks again,

Andrej Babić

Example:

designed+cared for by andrej babić ®

